Escherichia coli derivatives lacking both alcohol dehydrogenase and phosphotransacetylase grow anaerobically by lactate fermentation.

نویسندگان

  • S Gupta
  • D P Clark
چکیده

Escherichia coli mutants lacking alcohol dehydrogenase (adh mutants) cannot synthesize the fermentation product ethanol and are unable to grow anaerobically on glucose and other hexoses. Similarly, phosphotransacetylase-negative mutants (pta mutants) neither excrete acetate nor grow anaerobically. However, when a strain carrying an adh deletion was selected for anaerobic growth on glucose, spontaneous pta mutants were isolated. Strains carrying both adh and pta mutations were observed by in vivo nuclear magnetic resonance and shown to produce lactic acid as the major fermentation product. Various combinations of adh pta double mutants regained the ability to grow anaerobically on hexoses, by what amounts to a homolactic fermentation. Unlike wild-type strains, such adh pta double mutants were unable to grow anaerobically on sorbitol or on glucuronic acid. The growth properties of strains carrying various mutations affecting the enzymes of fermentation are discussed in terms of redox balance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homofermentative production of D- or L-lactate in metabolically engineered Escherichia coli RR1.

We investigated metabolic engineering of fermentation pathways in Escherichia coli for production of optically pure D- or L-lactate. Several pta mutant strains were examined, and a pta mutant of E. coli RR1 which was deficient in the phosphotransacetylase of the Pta-AckA pathway was found to metabolize glucose to D-lactate and to produce a small amount of succinate by-product under anaerobic co...

متن کامل

Metabolically Engineered Escherichia coli RR1

We investigated metabolic engineering of fermentation pathways in Escherichia coli for production of optically pure Dor L-lactate. Several pta mutant strains were examined, and a pta mutant of E. coli RR1 which was deficient in the phosphotransacetylase of the Pta-AckA pathway was found to metabolize glucose to D-lactate and to produce a small amount of succinate by-product under anaerobic cond...

متن کامل

Regulation of a-Ketoglutarate Dehydrogenase Formation in Escherichia coZi*

In the aerobic tricarboxylate cycle succinate is formed via oxidation of a-ketoglutarate, but anaerobically various bacteria form it via reduction of fumarate. The latter pathway was initially inferred to account for the large amounts of succinate and its derivative, propionate, produced in the fermentation of glycerol by propionic bacteria (l-4). Furthermore, fumarate was later shown to serve ...

متن کامل

Cloning and Expression of a Clostridium acetobutylicum Alcohol Dehydrogenase Gene in Escherichia coli.

An alcohol dehydrogenase (ADH) gene from Clostridium acetobutylicum was cloned on a recombinant plasmid, pCADH100. Escherichia coli HB101, and an allyl alcohol-resistant mutant, HB101-adh1, containing this plasmid were unable to grow aerobically or anaerobically on agar media containing sublethal concentrations of allyl alcohol. E. coli HB101 and HB101-adh1 transformed with the plasmid pCADH100...

متن کامل

In silico profiling of cell growth and succinate production in Escherichia coli NZN111

BACKGROUND Succinic acid is a valuable product due to its wide-ranging utilities. To improve succinate production and reduce by-products formation, Escherichia coli NZN111 was constructed by insertional inactivation of lactate dehydrogenase (LDH) and pyruvate formate lyase (PFL) encoded by the genes ldhA and pflB, respectively. However, this double-deletion mutant is incapable of anaerobically ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 171 7  شماره 

صفحات  -

تاریخ انتشار 1989